
Multi-Element Propagation

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

• fiber laser cavity:

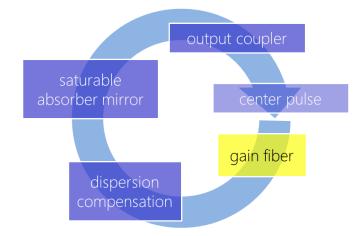
ring cavity Fast saturable absorber modelled by reflectivity R

$$R = R_{unsat} + R_{sat} \cdot \left(1 - \frac{1}{1 + P / P_{sat}}\right)$$

• modelling of each part by the NLSE

$$iA_{z} + \frac{g}{2}A + i\beta_{2}A_{tt} = i\gamma |A|^{2}A$$

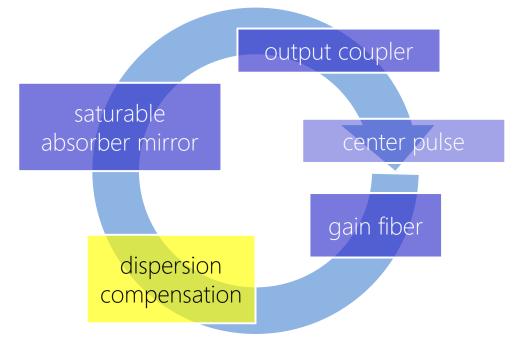
Multi-Element Propagation: Example: Short Pulse Fiber Lasers


Set up the gain fiber as a standard propagation with saturable gain

G

	loss 0 1/m
in ×	gain 6.90776 1/m
gain profile add second peak Center 1060 nm Width ~ 40 nm shape Gauss *	MFD 10.0 μm gamma 0.0023880! 1/(W m) Esat 23.561 μJ
ratio of second to first peak (set to zero for only one peak): 0 \bigtriangledown gain saturation 1e-11 J $g = g_0 / (1 + E / E_{sat.gain})$	simulation ✓ dispersion ★ Raman ✓ spm ★ self-steepening
user defined gain file use ASCII file for gain profile given in g(1/m) vs. wavelength (separator TAB) file	parameter temporal gain saturation steps 100
OK Cancel copy shape to clipboard	steps 100 stepsize 0.01 m distance 1.0 m

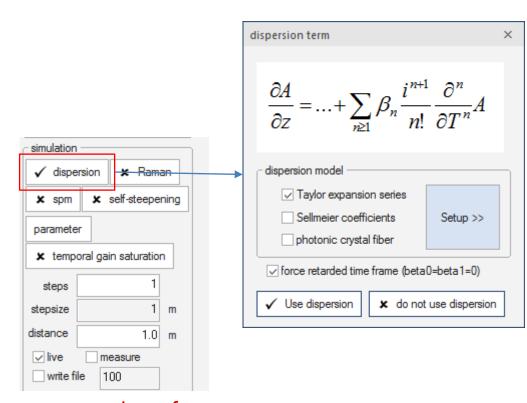
output coupler saturable center pulse absorber mirror gain fiber dispersion compensation Propagation parameter × standard propagatio 📼 waveguide

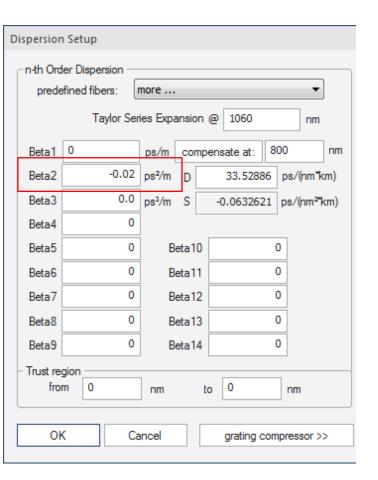

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

Set the dispersion of that amplifier fiber to fused silica (e.g. predefined with its Taylor series at 1060 nm)

	ue	Dispersion Se	etup					4	
save as fiber.ppf	10 m 10 m 4 dispersion term	Taylor S Beta1		nm ps/m	predefi		more fused silica @1060nm KKT (core 1.7 µm zD=770,1250) @ 1030n NKT (core 1.7 µm zD=750,1600) @ 1030n		
← ☐ New	$\frac{\partial A}{\partial z} = \dots + \sum_{n \ge 1} \beta$	Beta2 Beta3 Beta4 Beta5 Beta6	0.01640341019153872 4.427598189728069e-5 -6.11686e-08 2.00994e-10 -6.78474e-13	ps³/m	5	-27.499385294 0.176321 00 400	air silica approx@780nm air silica approx@1660nm (1.7µm=MFD 1. air silica approx@1060nm (3.5µm=MFD 2. air silica approx@1060nm (5.0µm=MFD 4. NKT LMA 5 (5.0µm=MFD 3.5ym, 72b=103 NKT LMA 5 (5.0µm=MFD 4.2µm, 72b=1070 air silica approx@800nm (1.7µm=MFD 1.7 air silica approx@800nm (2µm=MFD 2µm) 720 approx@800nm (2µm=MFD 2µm) 720	.9µm) 2D@975nm .2µm) 2D@1060nm 55nm) @ 1030nm 0nm) @ 1030nm 2µm) 2D@665nm) 2D@770nm @743nm	
C Load (Field and Multi-Element Settings) 호 Save (Field and Multi-Element Settings)	dispersion model ☐ ☐ ☐ Taylor expansion series ☐ Sellmeier coefficients	Beta7 Beta8 Beta9	2.11068e-15 -1.15713e-17 1.21432e-19			([Damian @750nm,1600nm (MFD 1.6µm) Zl Cristiani et.al. Opt.Exp.12, 124 (2004)(MF) Judley et.al. Rev. Mod. Phys., Vol. 78, No. Layertech GTI 1000-1080nm - 250fs @103 Hollow core 1060-02@1030nm Zero dispersion @ all	D=3.47µm)ZD@710nm . 4, (2006) Fig. 3	
Save As	photonic crystal fiber gas-filled silica-hollow c	Beta10 Beta11 Beta12	-9.78137e-22 5.06311e-24 -1.65466e-26		force ret	tarded time frame	e (beta0=beta1=0)		
Recent	□ force retarded time frame (t ✓ Use dispersion	Beta13 Beta14	3.16819e-30 -2.74483e-33					max 2400	
Load propagation parameter <u> </u>)5 0 -0.02 -	grating OK	g compressor >> Cancel		Save		copy dispersion ([nm],D[ps/nm/km],b2[ps²/m]) copy beta2 + group delay [nm],b2 [ps²/m], GD[ps/m]	1.12	1.19

Multi-Element Propagation: Example: Short Pulse Fiber Lasers




For the dispersion compensation, we only set second order dispersion.

Before, set the gain to zero, switch off SPM etc. Only dispersion need to be set.

As it is a linear step, a single step is enough, see next slide.

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

saturable

absorber mirror

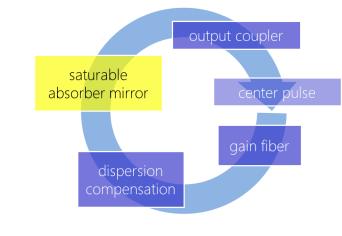
dispersion compensation

save as dc.ppf

output coupler

center pulse

gain fiber


Multi-Element Propagation: Example: Short Pulse Fiber Lasers

The saturable absorber is a different model, select "saturable absorber" on top of the propagation parameter dialog.

Then, set it up with the parameters on the right.

Propagation parameter ×
saturable absorber 👻 Setup >
waveguide

save as SA.ppf

Saturable Loss		×
 ✓ Fast saturable loss R0 70 % dR 30 % PA 100 W 	$R = R_0 + \Delta R - \frac{\Delta R}{1 + \frac{ A(T) ^2}{P_A}}$	OK Cancel
saturable absorber m	irror with time constants	
unsaturated reflectivity	60 % temporal response	A 0.2 ps
saturable reflectivity	30 %	
saturation fluence	30 µJ/cm²	
focal spot diameter	10 µm	
saturation energy	0.062831852 nJ	
use R=R0+dR*sin?	(Pi/2)*(P/PA)+phi_0) dR 30 PA 1 phi	i_0 0

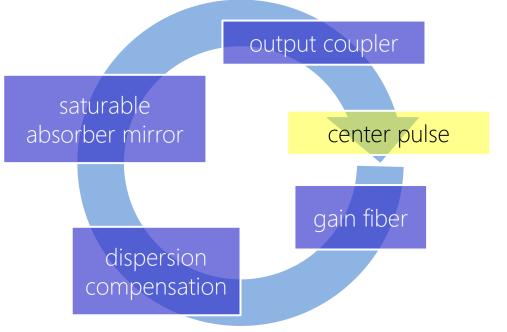
Multi-Element Propagation:

Example: Short Pulse Fiber Lasers

Outcoupling:

50% means complex multiplication with sqrt(0.5)

Propagation parameter


standard propagation	w.
standard propagation	
saturable absorber	
pulse injection	
custom filter	1
rate equation gain	d
pulse manipulation	
polarization manipulation	u
nonlinear loop mirror	
z-dependence	

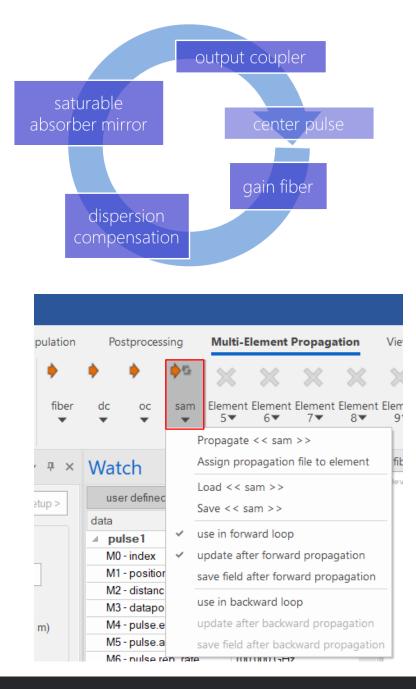
		output coupler	
S	aturable		
absc	Manipulation	×	ulse
	 Create Pulse Center Pulse Create double pulse delay of pulses (will be ✓ take phase shift into account (✓ Complex Multiplication Temporal t - time in sec helper variable h = 0 sqrt(0.5) i 0 Complex Multiplication Spectral I wl - wavelength in m, f - frequency helper variable h = 0 1 0 	I Domain	
	OK Cancel		

save as OC.ppf

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

Manipulation >	ĸ
Center Pulse	
Create double pulse	
delay of pulses (will be centered) 0.0 ps take phase shift into account (Mach-Zehnder equivalent)	
Complex Multiplication Temporal Domain	Ì
i 1	
Complex Multiplication Spectral Domain	
i 1	
	J
OK Cancel	

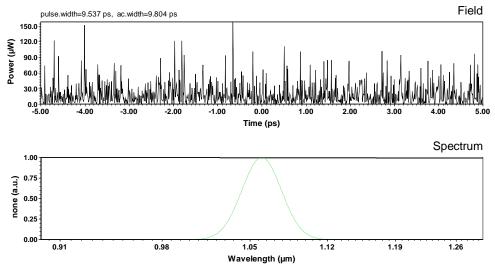
- Center pulse in the time domain, helps to converge the pulse, as changes are measured in the time domain


- Can be combined with OC.ppf in a single element

Propagation parameter ×	
pulse manipulation 👻 Setup >	
waveguide	
loss 0.7 + /	

save as center.ppf

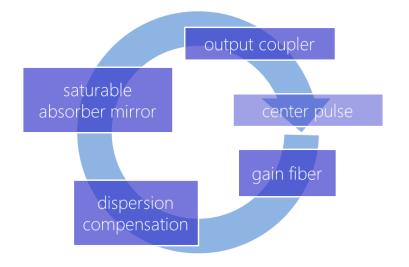
Multi-Element Propagation: Example: Short Pulse Fiber Lasers


- assign all files to elements in the right order of the cavity
- Select "use in forward loop" for all elements
- Select the last one to be updated after each loop to see convergence live during simulation
- lcons on top change according to selected status

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

(1) create initial pulse, e.g. quantum noise

(green spectrum is the gain spectrum from "fiber.ppf"

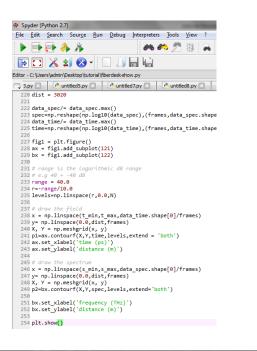


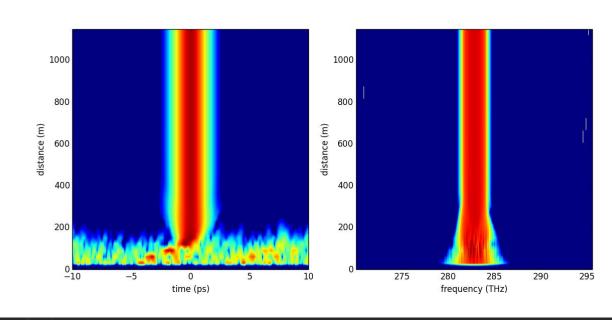
listance: 0.000 m position: 0.000 m energy: 191.864 aJ average power: 19.186 µW roundtrip: 0

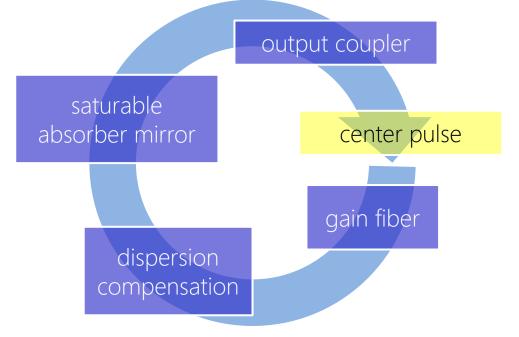
Pulse Profile and Data Array	<u> </u>
⊂ data array setup	
Size 1k (2^10)	
1000	
array center wavelength 1060	
half intervall 5 🗘 ps	
field profile definition	
field profile definition	
Type Gauss -	
FWHM 1 🗘 ps	
TempShift 🛛 🛛 🗎 🗘 ps	
phase 0 _ rad	
wavelength 1060 🛟 nm	
2nd order spectral phase 0 + fs ²	
3rd order 0 A fs ³	
•	
energy 🗌 0 🏮 J	
average power 🗹 0 🗘 W	
repetition rate 1e+11 🗘 Hz 🗸 cw	
scramble spectral phase (random phase)	
phase diffusion modell with given linewidth	
\checkmark add quantum noise (one photon per spectral node)	
double pulsing	
separation 0 ps magnitude 0	
✓ create field in data array 1	
add field to data array 1	
OK Apply Cancel reset	

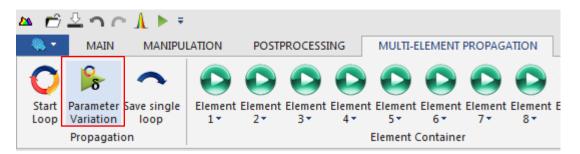
Multi-Element Propagation: Example: Short Pulse Fiber Lasers

(1) start loop (switch on "write slice … " for later postprocessing)



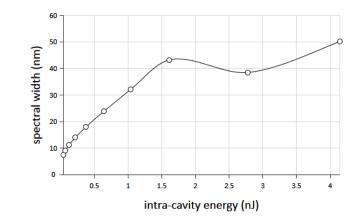



Loop propagation				×
✓ switch off individual □ update view after ea		2	5	5
vrite slice to bpf file		100		frames
maximum number of lo	oops	1000)	
Automatic stop of loop	, — ·			
✓ stop if converged				
- condition	1- 00	~	1	-
minimum change of	1e-00	0		
for at least	10		loops	
ОК	C	ance	I	


Multi-Element Propagation: Example: Short Pulse Fiber Lasers

Download the python script from the homepage to process BPF files.

Multi-Element Propagation:

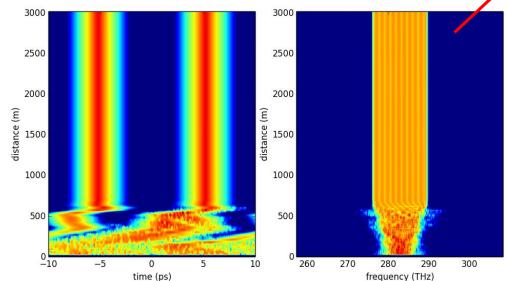

Example: Short Pulse Fiber Lasers

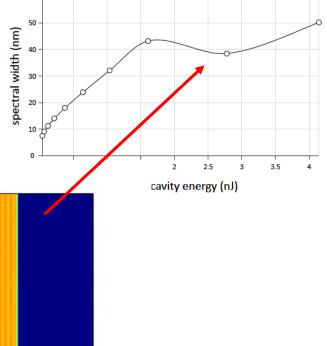
Multi-element > Parameter variation we change the gain saturation to increase the energy (remark: intracavity energy!)

 $\frac{\delta A}{2\pi} = \frac{\alpha}{2} A + \sum_{i} \beta_{i} \frac{|\tau^{(i)}|}{\sigma^{i}} \frac{\delta^{i}}{2\tau^{i}} A + i\gamma \cdot (1 - f_{1}) \left(1 + \frac{i}{\omega_{i}} \frac{\partial}{\partial T}\right) \left(A(z,T) \int_{-T}^{T} R(z) A(z,T-z)^{i} dz\right)$

fiberdesk

2D use final field as	s input for next loop (otherwise use start/create field) = x J , with x 1e-011	to 1e-009	datapoints log steps
in Element 0 - fibe	x-axis value =	1e9*M2	
✓ save to file C:\Use	rs \admin \Desktop \tutorial \oscillator simulations \energy so	aling.pvf	select base file
	Result = 1e9*M20 update or	use M20 - spec.	width.m 👻
start multiple elements	auto axis x intra-cavity energy (nJ)		
setup >>	auto axis y spectral width (nm)		

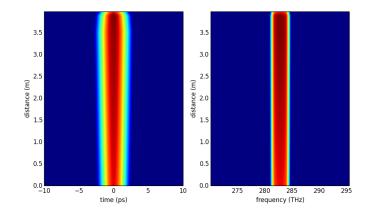



60

Multi-Element Propagation:

Example: Short Pulse Fiber Lasers

Multi-element > Parameter variation we change the gain saturation to increase the energy (remark: intracavity energy!)

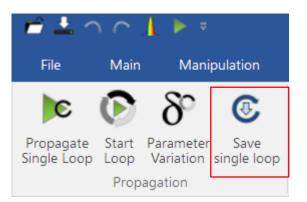


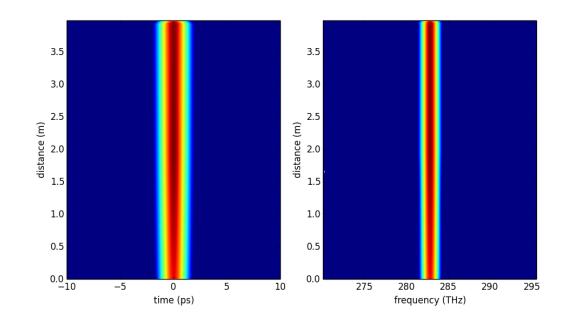
Multi-Element Propagation: Example: Short Pulse Fiber Lasers

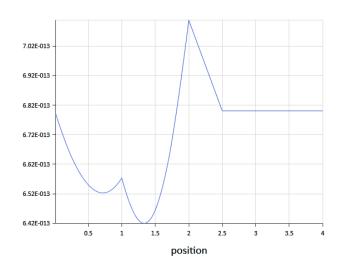
Intracavity evolution

- (1) select stable solution from saved file
- (2) specify slices to be saved
- (3) post-process

fiberdesk

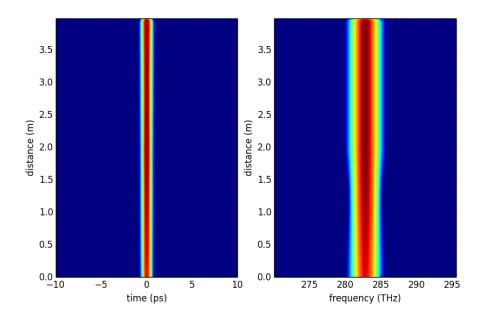

 $\frac{\partial \mathcal{A}}{\partial z} = \frac{\alpha}{2} \mathcal{A} + \sum_{i} \beta_{i} \frac{e^{i \theta_{i}}}{\sigma^{2}} \frac{\partial^{2}}{\partial z^{2}} \mathcal{A} + i\gamma \cdot (1 - f_{1}) \left(1 + \frac{i}{\omega_{i}} \frac{\partial}{\partial T}\right) \left(\mathcal{A}(z, T) \int_{z}^{z} \mathcal{R}(\mathbf{r}) \mathcal{A}(z, T - \mathbf{r})^{2} d\mathbf{r} \right)$

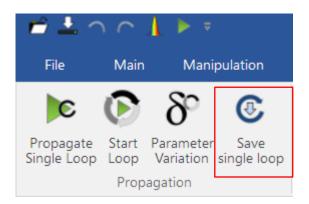


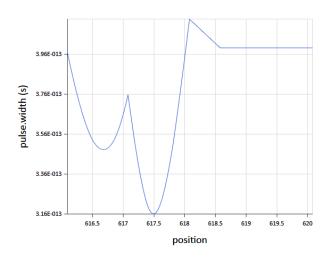

Dialog					3
forward	backward	filename	distance		slices
\checkmark		ons\fiber-simple.ppf	0	m	100
\checkmark		∙simulations\DC.ppf	0	m	10
\checkmark		simulations\SAM.ppf	0	m	1
\checkmark		simulations\OC.ppf	0	m	1
\checkmark		ulations\center.ppf	0	m	1
\checkmark			0	m	0
\checkmark			0	m	0
\checkmark			0	m	0
\checkmark			0	m	0
\checkmark			0	m	0
		s	um of slices:		113
		Cancel	Sav	e to B	PF file >>

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

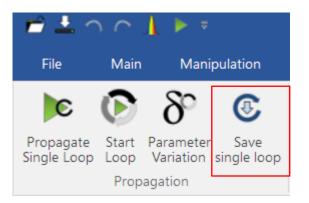
soliton solution: $beta2@DC = -0.06 ps^2$

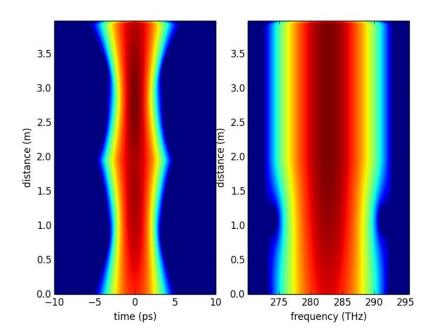


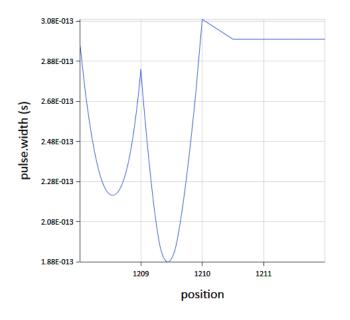




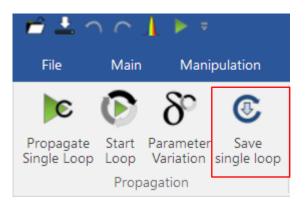
Multi-Element Propagation: Example: Short Pulse Fiber Lasers

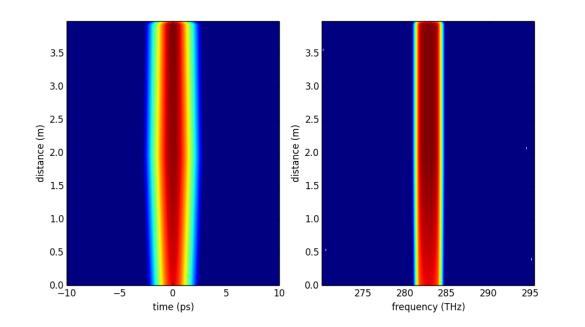

soliton solution: beta2@DC = -0.04 ps²

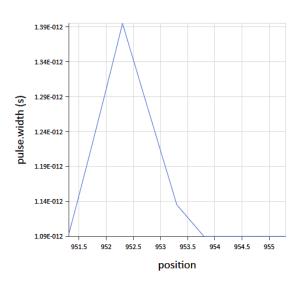




Multi-Element Propagation: Example: Short Pulse Fiber Lasers

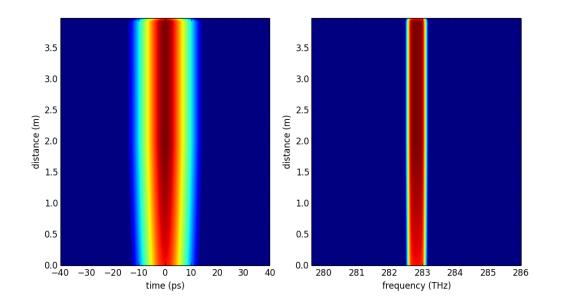

toward stretched pulse: $beta2@DC = -0.03 ps^2$

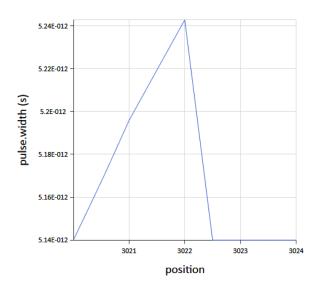




Multi-Element Propagation: Example: Short Pulse Fiber Lasers

similariton: beta2@DC = -0.02 ps^2





Multi-Element Propagation: Example: Short Pulse Fiber Lasers

chirped pulse oscillator: $beta2@DC = +0.02 ps^{2}$

